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1.1 Motivation

Hypersonic vehicles are designed to withstand severe heat loads. Such vehicles
include hypervelocity projectiles, interceptor missiles, re-entry vehicles, and hypersonic
aircraft. Maximum heating and, hence, the potential for material ablation, is typically
most critical at the nose tip.

Of particular interest herein are hypervelocity projectiles. Such projectiles can
have large penetration depths into armor due to their very high kinetic energy at impact
[Refs. 1,2] and consequently the U.S. Army is interested in their development.
Between 1.5 km/sec and 2 km/sec at sea level the projectile nose-tip can withstand the
aerodynamic thermal environment provided a high melting-point material such as
tungsten is used. However, in the flight regime 2-4 km/sec, the projectile nose-tip
experiences severe heat rates and shape change due to ablation can occur. The shape
change can produce unacceptable perturbations in the aerodynamics and the flight path
and also reduce penetration characteristics. As an example of the severity of the
heating, the stagnation temperature at standard sea level conditions and a velocity of 3.1
km/s (Mach 8.9) corresponds to the melting point of tungsten (3680 K).
Consequently, to extend the flight regime above 2 km/s there is a need to develop active
or passive techniques to reduce tip heating rates.

There has been speculation that introducing an axial cavity in the blunt nose
region of a hypersonic vehicle (Fig. 1) may reduce surface heating during flight. This
speculation was based on two observations. First, there is substantial experimental
evidence that stagnation point heat transfer is reduced for certain nose-cavity
configurations. Specifically, the heat transfer rate at the cavity base is low compared to
standard nose-tip stagnation-point heat rates. Second, there is recent experimental
evidence that the heat transfer along the outer surface, near the cavity lip, is
significantly reduced for certain nose-cavity configurations compared to spherical nose-
tips. Finally, there is abundant experimental evidence that nose-cavity flow resonates
strongly at a discrete frequency. It was thought that perhaps this resonance affects the
boundary layer over the nose/cavity in such a way so as to change the mean heat
transfer. Consequently, the concept of a forward-facing cavity for overall nose-tip
surface heat reduction is at least plausible.
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Fig. 1 : Schematic of axial cavity in the nose region of a hypersonic vehicle




1.2 Objectives

The objective of this report is to lay out the details of an analysis of the fluid
dynamics of unsteady cavity flow. The bulk of our other results have appeared
elsewhere. An initial comparison between experiment and numerical results appeared
in Engblom et. al. [Ref. 3]. A discussion of the numerical simulation results for
oscillating cavity flow appeared in Engblom et. al. [Ref. 4] while a presentation of the
nose tip heating results appeared in Engblom and Goldstein [Ref. 5]. An overall
compendium of the work is found in Engbom’s dissertation [Ref. 6] including a review
of the relevant literature and the details of the commercial Computational Fluid
Dynamics (CFD) package used.

The material herein consists mostly of material from chapter 5 of Engblom’s
dissertation. It begins with a discussion of the origin of the primary “organ-pipe”
frequency found in cavity oscillations and then covers the mechanisms of cavity
resonance. The resonance is very similar to the motion of a damped harmonic
oscillator. This observation leads to the development of a spring-mass-damper (SMD)
model of shallow cavity oscillation. This SMD model is then compared to the results of
the full CFD simulations. Finally, in deeper cavities it is found that self-sustained
oscillations occur in the CFD and this phenomenon is discussed in the final section.

2 Primary ‘Organ-Pipe’ Frequency

Oscillating pressure levels within a cavity are a dominant experimental flow
feature in forward-facing cavity configurations. Resonant frequencies are obtained by
spectral analysis of the fluctuating pressure measurements made in the cavity. Most of
the energy of the oscillations is contained in a primary mode frequency. The pressure
oscillations within the cavity are found to be essentially axial (1-D) based on two-point
spatio-temporal correlations [Refs. 1,2,3,7,8]. The rms amplitude of the oscillations
increases along the cavity walls from the cavity mouth to a maximum at the cavity
basewall [Ref. 9].



Primary frequencies (f;) can be estimated a priori from a simple linear relation
derived from the 1-d wave equation in classic organ-pipe theory by considering only

the characteristic wavelength (A) and the speed of sound (c,) inside the cavity:

~%
h n (1)

Time accurate flow animations for modestly large diameter cavities (described
later) indicate that pressure waves travel between the bow shock and the base of the
cavity. These pressure waves are reflected off the base wall and inverted off the bow

shock. Consequently, an appropriate length A is four times the distance between the

mean bow shock location and the cavity base along the centerline (L*). Numerical

steady flowfield solutions indicate that the flow is virtually stagnant inside the cavity.
Consequently, the speed of sound ¢, can be estimated assuming the gas temperature
inside the cavity is approximately the stagnation temperature (T,) of the flow. Thus,

_ART,
.fi - * (2)
4L

As seen in Fig. 2, this equation clearly provides good agreement with primary
frequencies derived from various experimental runs and time-accurate numerical
simulations. The shock standoff distances required for the frequency calculations are
obtained from either schlieren photographs or steady flow CFD solutions. Note that
the straight line with slope of 1 represents perfect agreement between the theoretical
(Eqn. 2) and measured frequencies. The agreement is generally best for the deepest
cavities (i.e., lower frequencies).

3 Mechanisms of Resonance

In order to study the mechanisms of resonance we first compare numerical
simulation results to experimental results for the same body configuration and
freestream conditions at Mach 5 (Engblom (Ref 6), Section 3.3). The numerical input
noise is adapted from a broad spectrum ‘white noise’ data set obtained from pitot
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stagnation pressure (Pt,) measurements on a blunt body in the University of Texas at
Austin, Pickle Research Center (UTA, PRC) Mach 5 blowdown facility (Ref. 6,
Section 3.3). This data set is re-scaled to provide a numerical inflow noise history and

retain the same rms variation of approximately £1.15%. Numerical simulations involve

more than 50 oscillations at the primary frequency. The rms of base pressure
fluctuations is estimated from the base pressure history after the oscillations are ‘stable’
(i.e., after the initial 3-10 cycles for most cases). Another set of numerical simulations
without inflow noise (steady inflow conditions) is also computed.

Input perturbations typically result in large stagnation pressure oscillations at the
base of the cavity. The amplification (G) is defined as the ratio of the output (centerline
base pressure) rms amplitude to the input (freestream) rms amplitude:

G = Poaserms 3)

P°°rms

For example, if a cavity driven with a perturbation input rms of £1.15% Poo and
11.15% poo produces an output rms of £22.3% Ppgge, this results in an amplification

of 20.

The numerical results (i.e., portions of the base pressure histories) for various
cavity depths at Mach 5 are shown in Fig. 3. Based on power spectrum analysis, most
of the oscillation energy is contained within a small band near f,. Note, the oscillations
become ‘cleaner’ (i.e., more sinusoidal) and stronger with cavity depth. The L/D=3.0
case exhibits ‘quasi-static’ bow shock motion in which the bow shock remains fixed at
the mouth of the cavity during inflow and at an upstream position during outflow and
moves abruptly between these two positions. This motion is reflected in the shark-
tooth shape of the base pressure trace.

Fig. 4a illustrates how amplification grows with cavity depth in numerical
simulations and experiments [Ref. 7] at Mach 5. When freestream noise is present both
the numerics and experiments show a gradual increase of oscillation strength with
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cavity depth for relatively shallow cavities (L/D < 1.0). Note that the numerical
estimates for shallow cavities involve some statistical uncertainty (approximately
+10%) due to the limited duration of the simulation. Note also that both the numerical
and experimental models include a flat basewall. Since the experiments involving
medium depth cavities (0.4 < L/D £ 0.7) exhibit two modes of resonance [Ref. 2, 3]

the rms estimate is somewhat ambiguous and is not included (dotted line). Specifically,
in that depth range experiments find that the pressure oscillations switch between a very
strong resonance mode and a weak resonance mode at random time intervals. This
behavior is also strongly asymmetric and cannot be directly compared to axisymmetric
numerical results.

A qualitative change in the curve occurs near L/D=1.0. Fig. 4a shows that the
slope of the amplification curve increases dramatically (/D > 1.0) in both the

experiments and numerical simulations. However, the numerical model produces a
smaller estimate of the oscillations which occur in the experiments. Some of the
difference may be due to numerical dissipation of the fast-moving bow shock and
strong waves within the cavity; however, a rigorous spatial and temporal sensitivity
study of the L/D = 2.0 case indicates the numerical solution is converged (see Ref. 6),
Section 6.3 for more details on this sensitivity study). Other possible numerical causes
of the discrepancy include the axisymmetric and laminar flow assumptions since the
experimental flow is not entirely axisymmetric and may include turbulent. The
numerical and experimental results are quite sensitive to cavity depth in this regime and
it is reasonable to expect that these results are very sensitive to many other parameters.

Fig. 4b illustrates how amplification grows with cavity depth in numerical
simulations at Mach 5 with and without freestream noise. Numerical oscillations are
only obtained for relatively shallow cavities (/D < 1.25) by introducing freestream
noise. These results imply that freestream noise is the mechanism which drives the
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oscillations for relatively shallow cavities in wind tunnel experiments. The implications
of this are discussed in more detail later in this report.

The numerical results in Fig. 4b, however, also indicate that relatively deep
cavities are unstable. Specifically, the deeper cavities resonate strongly without
freestream noise. This is termed self-sustained resonant oscillations. In the deep cavity
cases the oscillations are nearly the same strength regardless of whether or not inflow
noise is included in the simulation. Potential mechanisms which drive these self-
sustaining oscillations are briefly discussed in Section 4.5.

To further validate the claim that freestream noise is the mechanism which
drives resonance in relatively shallow cavities, numerical simulation results are
compared to the quiet freestream experimental results obtained in the Mach 4 Purdue
Quiet Flow Ludwieg Tube (PQFLT) [Ref. 4]. The experimental inflow noise contains

a rms variation of only about 10.048%, based on pitot pressure (Pt,) variation
measurements. The numerical input noise is again adapted from Mach 5 blowdown

tunnel measurements except that it is rescaled down by a factor of 24 (from £1.15%) to

obtain the desired rms variation of £0.048%. Again, more than 50 oscillation cycles

are computed for each configuration.

Fig. 5a shows a portion of the experimental base pressure signal for an
L/D=1.0 case. The rms of the these fluctuations is approximately +0.07%

G = Pb‘;'.# =1.5). A spectral analysis indicates that the peak level of energy for the

full experimental data set is approximately 6300 Hz. Fig. 5b shows a corresponding
numerical pressure signal, measured at the cavity base, for the same duration. The rms

of the fluctuations is roughly 0.09% (G = 1.9): this represents reasonably good
agreement between the experiments and the numerics. Note that this numerical
amplification involves some statistical uncertainty (roughly £10%) due to the limited

duration of the simulation. Note also that the experimental mean basewall pressure
(essentially Pt,) varies slightly from one run to the next due to wind tunnel tolerances.

10
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A detailed power spectrum of the simulation is difficuit to obtain due to the
extended signal required. However, it is clear that most of the energy of the
oscillations is contained in a primary mode of approximately 6300 Hz. The
experimental signal contains more high frequency noise. This is likely because the
numerics do not resolve high frequency waves and/or these high frequencies (near 200
kHz) exceed the transducer frequency response and may represent electrical noise.

Fig. 6 illustrates how the amplification grows with cavity L/D in the numerical
simulations and experiments at both Mach 4 (PQFLT) and Mach 5 (PRC). The
numerical and experimental results in PQFLT again show a gradual increase of

oscillation strength with cavity depth for relatively shallow cavities (L/D < 1.0). There

is no evidence of a two mode (3-D) behavior mentioned earlier for the Mach 5
experiments in any of the Mach 4 PQFLT results. Note also that the Mach 5
amplification results demonstrate a larger rate of increase with cavity depth than the
Mach 4 results. Based on sensitivity results of amplification versus Mach number
(discussed later in Section 5.6) it is expected that amplification is somewhat greater at
Mach 5. However, the most important conclusion is that these shallow cavities amplify
the inflow noise level by roughly the same amount (within a factor of 2) despite the
dramatic difference in tunnel noise levels (factor of 24). Consequently, the strength of
oscillations for relatively shallow cavities increases with freestream noise level. These
results further suggest that broadband freestream tunnel noise is the mechanism of
resonance in relatively shallow cavities.

But what is the sensitivity of rms oscillations to frequency content of noise?
Time-accurate simulations of Mach 5 flow over a sharp lip, L/D=0.75 nose-cavity (f; =
3600 Hz) were conducted using the nominal broadband freestream noise model and a
notch filtered freestream noise model (notched from 2400 Hz to 4000 Hz). This filter
range was chosen based on a sensitivity study of amplification versus input noise
frequency (discussed in section 5.1) to encompas most of the frequency range to which
the cavity is sensitive. This cavity produces an amplification of roughly 3.0 (200%
increase) when driven by broadband freestream noise. However, the cavity has an
amplification of 1.3 (30% increase) when driven by the notched filtered freestream
noise. These results demonstrate that relatively shallow cavities only resonate strongly

12
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if the freestream noise contains energy near the primary mode frequency.

4 Spring-Mass-Damper Model

The response of a shallow cavity to inflow noise is somewhat analogous to the
response of a damped harmonic oscillator. As just described in Section 3, relatively
shallow cavities (L/D < 1.25 @ Mach 5) require the presence of inflow noise
containing energy near the characteristic frequency. It will also be shown (Section 5.2)
that the strength of oscillations is proportional to the input noise rms (i.e., the
amplification remains constant). These features are similar to those of a damped
harmonic oscillator which resonates when a periodic forcing function is applied and
whose amplitude of oscillations is proportional to input amplitude (i.e., gain is
constant). Consequently, it appears plausible that a spring-mass-damper model could
be configured to emulate the response of relatively shallow cavities to inflow noise.

Acoustic problems are often modeled using mechanical analogs consisting of
lumped elements. The acoustical lumped elements include inductance, compliance, and
resistance which are directly related to the mechanical elements of mass, stiffness
(represented by a spring), and dissipation (represented by a damper), respectively. The
acoustical lumped elements are generally derived from the linearized wave equation,
which includes a small disturbance assumption. Specifically, the excess pressure (Ipl)

is assumed small compared to the appropriate static quantity (i.e., lpl « pc,?). This

assumption is widely used in acoustical analysis and is satisfied in most ordinary
acoustic applications. In accordance with the lumped element approximation the
characteristic dimensions in the problem must be small compared to the oscillation
wavelength (based on the acoustic wave speed). The lumped element approximation is
closely related to the assumption that the process is quasi-static (i.e., the entire fluid
element changes uniformly in time). For example, the acoustical element of compliance
(stiffness) may be derived from the classic short closed cavity problem (Fig. 7a) since
the pressure may be assumed constant throughout the cavity at any given time.
Similarly, the acoustical element of inductance (mass) may be derived from the classic
short open cavity problem (Fig. 7b) since the fluid velocity may be assumed constant
throughout the cavity at any given time. Resistance elements are derived in different
ways depending on the dissipation mechanism. For example, the radiation resistance

14
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element may be derived from a baffled-piston radiating acoustic energy into a semi-
infinite medium. For further details concerning the derivation of the various acoustical
lumped elements and the mechanical analogs the reader is referred to Blackstock [Ref.
10].

The Helmholtz resonator (Fig. 7c) is commonly modeled as a spring-mass-
damper system. The source of the oscillations are input perturbations (acoustic waves
traveling into the resonator). For example, input perturbations may be created by
crossflow at the inlet which causes periodic vortex shedding at the mouth of the neck.
The vortex shedding frequency locks on to the resonator ‘quarter-wave’ frequency via a
feedback mechanism. The resonator typically consists of a short neck attached to a
relatively large chamber. The lumped element approximation is reasonable since the
oscillation (acoustic) wavelength is typically much larger than the characteristic
dimensions (i.e., by a factor of roughly 4). It may be shown that the fluid in the
chamber behaves like that in a short closed cavity and is represented by a spring. The
fluid in the neck behaves like that in a short open cavity and is represented by a
vibrating cylindrical mass. The mass element is typically chosen to have the same
radius as the neck and a length of roughly one neck radii. A radiation resistance ‘load’
is present since the neck fluid vibrates beside an infinite medium. For details and
references concerning the Helmholtz resonator the reader is again referred to Blackstock
[Ref. 10]. Morse and Ingard [Ref. 11] conclude that if the resonator vibrates into a
finite medium (Fig. 7d) then radiation resistance is not present and the main dissipation
mechanism is probably due to viscosity.

The hypersonic axial cavity problem can be modeled analogously to the
Helmholtz resonator with lumped elements. The small disturbance assumption appears
to be reasonably satisfied for weakly-oscillating, relatively shallow, noise-driven
cavities (L/D < 1.25). Note that this condition is certainly violated for the deeper
cavities which produce strong self-sustaining oscillations. The hypersonic axial cavity
resembles a Helmholtz resonator except that the cavity must behave as both the neck
(mass) and chamber (stiffness). Note that the wavelength is generally greater than four
times the cavity length and diameter. Consequently, it may be appropriate to replace the
cavity fluid with mass and stiffness elements. However, this analysis does not
introduce the necessary numeric mass and stiffness values or the dissipation element.
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Consequently, a more intuitive approach is required to produce a mechanical
analogy. Specifically, based on time-accurate data and flow animations and the
solution to the linearized wave equation, a number of observations are made about the
fluid dynamic behavior below. Based on these observations a set of simplifying
assumptions is made which lead to the formulation of the basic spring-mass model (see
Section 4.2). The dissipation element is added based on further analytical study in
Section 4.3. The model is summarized in Section 4.4.

4.1 Fluid Dynamic Observations

As described earlier, inflow noise drives oscillations within relatively shallow
cavities; without noise the cavity does not oscillate. Time-accurate flow animations
show the fluid dynamic mechanism by which resonance is achieved. Consider a nose-
cavity flow simulation involving a sinusoidal model of inflow noise. During one half-
cycle the freestream stagnation pressure is larger than the mean value. This positive
freestream perturbation results in a larger inflow momentum (and stagnation pressure)
reaching the cavity mouth. This relatively large momentum ‘encourages’ cavity inflow
(and increases the pressure gradient within the cavity). During cavity inflow the bow
shock is moving downstream, towards the cavity mouth (Fig. 8a). Similarly, negative
freestream perturbations result in a smaller inflow momentum (and stagnation pressure)
reaching the mouth. This relatively small momentum ‘encourages’ cavity outflow (and
decreases the pressure gradient within the cavity). During cavity outflow the bow
shock is moving upstream, away from the cavity mouth (Fig. 8b). Cavity flow
reversals occur after each half-cycle. These observations indicate how freestream flow
momentum (or stagnation pressure) perturbations are the ‘driving force’ behind the
oscillations.

During start-up (i.e., the first several cycles) both the strength of the pressure
oscillations inside the cavity and the bow shock oscillations grow with each input cycle
(Fig. 9). Eventually, a pseudo-steady state variation of pressure is reached. The
pressure levels within the cavity simply oscillate roughly symmetrically about the
steady-state stagnation pressure. The bow shock also oscillates roughly about its
steady-state position. During each oscillation cycle the basewall pressure signal reaches
a maximum shortly after the bow shock reaches the maximum downstream position.
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Fig. 8a : Pressure contours (cavity inflow, shock moving aft)

(vectors indicate flow direction) (L/D=0.75, Mach 5, 5% sinusoid) |

P(N/m?)
200000
187500
175000
162500:
150000
137500
125000+
112500
100000
87500
75000
62500
50000
37500
25000 -

Fig. 8b : Pressure contours (cavity outflow, shock moving fwd) :
(vectors indicate flow direction) (L/D=0.75, Mach 5, 5% sinusoid) -

18




170000

160000 -

150000 |-

pressure (Pa)

140000 |-

T

130000

120000 L — ' ' : /
0.000 0.001 0.002 0.003 0.004
time (sec)
Fig. 9 : Typical base pressure history (sinusoidally-driven)

(L/D=0.75, Mach 5, 2% sinusoid, 3200 Hz)

Specifically, the base pressure signal lags the bow shock oscillations by roughly 45 deg
(i.e., 1/8 of an oscillation cycle). Numerical simulations (to be discussed in detail in
Section 5.2) also indicate that amplitude of bow shock oscillation increases almost
proportionally to basewall pressure amplitude (or rms) for modest strength oscillations.
The later observation indicates that the flow exhibits a ‘stiffness’ since cavity basewall
pressure changes proportionally to bow shock movement.

By definition the total mass inside the cavity does not change in a steady flow;
the mass flow entering the cavity immediately leaves the cavity. The cavity flow
velocities are generally less than Mach 0.1. Consequently, the cavity mass may be

estimated using the cavity fluid stagnation density (py, or po). In unsteady, time-
accurate simulations involving shallow cavities the total mass within the cavity was
found to oscillate moderately (e.g., +20% for L/D=0.75, Mach=5, 2% sinusoid

noise). For simplicity one may assume the cavity mass is roughly constant for these
flows.

Figs. 10a and 10b illustrates the absolute and acoustic pressure distributions
along the symmetry line at various times during one cycle after the flow has reached a
pseudo-steady state. These distributions were obtained from the time-accurate solution
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for a representative case (i.e., L/D=0.75 at Mach 5 driven with +2% sinusoidal noise at

3400 Hz). The acoustic disturbances are calculated by subtracting the nearly uniform
steady flow pressure values from the absolute pressure values. Clearly, the pressure
oscillations resemble a quarter-sine wave distribution from the cavity mouth (cavity lip)
to basewall at each realization in both plots. The rms pressure levels increase from the
lip region and reach a maximum at the cavity base. Careful examination of the absolute
pressure distributions reveal that maximum basewall pressure lags the maximum-
downstream bow shock position by a phase difference of roughly 45 deg (i.e., 1/8 of
an oscillation cycle). This lag is clearly evident in flow animations and implies that the
cavity fluid is reacting to freestream perturbations.

Some of these trends are confirmed by linearized wave equation analysis [Ref.
12].  Consider the linearized wave equation for acoustic pressure with appropriate
boundary conditions at the bow shock (x=0) and cavity basewall (x=L*):

dP , JP JP
20 P(x=0)=0, Z_(x=1*=0 4
ot C 92 (x=0) ax' ) @

By separation of variables a solution is obtained for the acoustic pressure distribution as
a function of axial position and time. Substituting this expression into the Euler
equation and requiring the acoustic velocity to be zero at the basewall, the acoustic
velocity distribution is also obtained. Eqn. 5 contains the acoustic pressure and

velocity distributions as functions of axial position (x) and time (t), and T is the
oscillation period:

P(x,t) = P,sin(mx/2L)sin2xt/T), wheret = 1/f;

U(x,t) =U,cos(mx /2L*)cos(2xt/ T) (5)

F,=2U, Z,=p,c,

0~ o?

The acoustic pressure and velocity peak amplitudes, P, and U,, occur at the cavity
basewall and bow shock, respectively. Note that the spatial pressure distribution
follows a quarter sine wave as just described for the CFD solution. The pressure and
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velocity amplitudes are related by the characteristic impedance (Z,) of the fluid, defined
above, again implying a fluid stiffness. This analysis confirms the numerical
observations described above.

4.2 Spring-Mass Model Formulation

A set of simplifying assumptions, based on the fluid dynamic observations
described in the previous section leads to the following model formulation. The
stagnation pressure reaching the cavity mouth would be an appropriate choice for a
‘driving pressure’ in a 1-D spring-mass-damper model. Sinusoidal variations in the
freestream static pressure and density lead to sinusoidal variations in the ‘driving
pressure’ in the s-m-d model. Next, assume that the bow shock velocity relative to the
body is small (i.e., weak oscillations) so that the relative shock jump conditions are
assumed fixed. Consequently, the rms value of the stagnation pressure downstream of
the shock normalized by P, is identical to the freestream static pressure rms value
normalized by Peo. Assume that the stagnation pressure variation (Eqn 6) represents
the ‘driving pressure’ applied at the cavity mouth. The sinusoidal input pressure (P;;)
is a function of Pt, (from normal shock relations), time, input noise amplitude (A), and
input noise period.

B, (t)= P, [1+ Asin(2nt /7)) (6)

As discussed earlier, for simplicity one may assume the cavity mass and density
are roughly constant for weakly-oscillating cavity flows. In the 1-D s-m-d model the
cavity fluid mass (per unit area) is estimated using the stagnation density behind a

normal shock (p¢,) in steady flow and the cavity length:

Mcay = pg, L. )]

However, the cavity fluid must also be accelerating nearly uniformly in order
that it may be treated as a rigid body (i.e., a mass element). The substantial derivative
in the Euler equation represents the total acceleration at a given point and is a function
of the local pressure gradient:

22




Dt p ox

for negligible viscous forces.

In order to treat the cavity fluid as a mass element the axial pressure gradient inside the
cavity must be assumed constant. As described in the previous section, the axial
pressure distribution actually follows nearly a quarter-sine wave distribution at each
instant during the oscillation cycle. We approximate the quarter sine wave shape as
simply a straight line so a constant mean pressure gradient is assumed for the entire
cavity.

An expression for the mean pressure gradient is developed as follows. The s-
m-d model assumes the input pressure (‘driving pressure’) is applied at the cavity
mouth. The s-m-d model also calculates the basewall pressure (discussed below). The
axial pressure distribution inside the cavity then follows a straight line between the two
endpoints. The mean pressure gradient is the same for quarter-sine and linear
distributions which share the same endpoints:

dP Pyoe — P;
o — ~_base i )
9% roan L

The sum of pressures on the cavity fluid mass element is then easily found using Eqn.
8 and some manipulation:

XP=P,-P,, (10)

The final unknown in the spring-mass model is the cavity basewall pressure
(Pbase) which may also be found from fluid dynamic observations. The base pressure
amplitude appears to grow proportionally to the bow shock amplitude for a given nose-
cavity geometry for weak to moderate oscillations (see Section 5.2). This behavior
indicates a fluid stiffness. Moreover, this stiffness is reduced as cavity depth is
increased in that the base pressure amplitude grows more slowly with bow shock
displacement amplitude. This trend confirms the common experience that pushing a
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piston into a deep cavity is easier than pushing it into a shallow cavity. Consequently,
the basewall pressure is modeled using a spring relation.

The basewall pressure (or ‘spring force’) is calculated based on the cavity
stiffness (k) and the current deviation of the bow shock position (x-xp) from its steady-

state equilibrium position:

Piue =k(x—x,), where x, =P, /k (11)

Recall that the natural frequency of a spring-mass-damper system is a function of the
mass (already known from Eqn. 7) and stiffness. The natural frequency (f}) of any
given nose-cavity may be calculated from Eqn. 2. So, the stiffness is easily obtained as
follows by substituting values for the mass and natural frequency:

k = (27)’ e (12)

The current bow shock position (x) is estimated using the current mass element position
(the bow shock is assumed fixed to the mass). Steady flow conditions (i.e., ‘spring
force’ equals the input force) are used to set the initial shock position (x), see Eqn. 11.

There is a relatively small additional mass element that should be added to the
cavity mass element to account for cavity mouth effects on the system mass:

msys = mcav + Am (13)

The details regarding this additional mass element are provided in the discussion of the
dissipation coefficient in the next section.

4.3 Dissipation Mechanism

The dissipation mechanisms which damp cavity oscillations are assumed to
include those commonly listed for the Helmholtz resonator [Ref. 10]: fluid viscosity,
wall heat transfer, and radiation of acoustic energy. It is reasonable to believe that there
may also be a mechanism associated with shock motion. One can imagine viscous wall
forces tending to retard the motion of the cavity fluid as it moves back and forth. Wall
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heat transfer can also cause dissipation since compression and expansion which occurs
during the oscillations tends to be isothermal, not adiabatic, in the thermal boundary
layer. Dissipation and dispersion of acoustic waves caused by viscous forces and heat
transfer within the boundary layer can be estimated for a cylindrical cavity based on
wave equation analysis [Ref. 10]. There are also thermoacoustic effects [Ref. 13] in
which the heat transfer to the wall is different during compressions than during
expansions thereby creating a net heating or cooling effect which may affect oscillation
strength. A related effect is the net heating of the wall which occurs during
compression/expansion since the thermal conductivity of air increases with temperature.
However, numerical simulations for a representative nose-cavity case with and without
fluid viscosity (see Section 5.7) and with and without wall heat transfer (see Section
5.8) indicate negligible differences in the resulting pseudo-steady pressure oscillations.
Consequently, viscous and thermal wall effects do not appear to be the primary
dissipation mechanisms for the hypersonic axial nose-cavity.

The primary dissipation mechanism appears to be associated with radiation of
acoustic energy from the cavity mouth, as in many other acoustic devices which include
an open tube (e.g., Helmholtz resonator into an infinite medium). When sound energy
reaches the end of a short tube some of the acoustic energy is reflected back into the
tube while some is radiated into the fluid outside the tube. Typically the effect of
radiation from the end may be approximated by assuming a small layer of fluid
oscillates at the cavity mouth like a piston. For the present geometry, the body outer
surface acts as an annular flange or baffle. Hence, the acoustic behavior is represented
by a baffled-piston. Flow animations clearly show acoustic waves radiating from the
cavity mouth into the semi-infinite field. Although acoustic energy is reflected by the
bow shock, some acoustic energy leaving the mouth radiates radially and downstream,
representing energy dissipation. Also, the discussion in Section 4.1 confirms that the
fluid at the cavity mouth accelerates almost uniformly and can be treated as a lumped
mass element which vibrates like a piston. Consequently, there is strong evidence that
the principal dissipation mechanism is related to the baffled-piston radiation effect.
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4.4 Baffled-Piston Radiation Model

Attempts to analytically model the baffled-piston radiation effect present in the
hypersonic axial cavity problem are described below. First, analytical results from the
classic baffled-piston problem are applied to the present problem. Then a baffled-
piston image problem is developed to investigate the effect of bow shock reflections in
the present problem. A different dissipation argument, based on the spherical
spreading of acoustic energy between the cavity mouth and bow shock, is also
presented. Finally, an experimentally-derived dissipation trend is briefly discussed. A
functional relationship for the dissipation element within the spring-mass-damper model
is chosen based on the trends established by the analytical work.

The baffled-piston oscillating beside a semi-infinite medium (Fig. 11a) is a
classical acoustic problem in which the piston radiates into a uniform, semi-infinite
domain. In the classic problem an analytical expression for the complex pressure field
is calculated by integrating the effect of simple sources representing the vibrating
surface at each point in the field. The complex impedance at the piston face (Zp = Z; +
iZ;) is calculated by dividing the mean pressure amplitude (Po) over the piston face by
the piston velocity amplitude (Uy). The real part of the impedance (Z;) represents the
radiation resistance for the acoustic system, which is analogous to the dissipation
coefficient (b) in a mechanical system. The imaginary part (Z;) represents the acoustic
inductance, which is analogous to a mass element in a mechanical system. Fig. 11b
illustrates the variation of the real (R) and imaginary (X) coefficients of the radiation
impedance (i.e., real and imaginary parts normalized by Z,) with the wave number (wn

= 2aD/c,, where D is the cavity diameter and w the oscillation frequency). The wave

number is essentially a non-dimensionalized frequency. In the low frequency limit (wn
= 0) the resistance coefficient is zero. No acoustic energy is transmitted to the semi-
infinite field. In the high frequency limit the coefficient is approximately one (i.e., the
resistance is equal to the characteristic fluid impedance, Z,). All of the acoustic energy

is radiated to the semi-infinite field.

Suppose now that the hypersonic axial cavity flow problem contains a baffled-
piston radiating into a semi-infinitt medium (i.e., ignore the bow-shock). The
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Fig. 11b : Baffled-piston radiation resistance and inductance (Ref. 41)
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characteristic impedance in the hypersonic axial cavity problem corresponds
approximately to the stagnation conditions (poCo). Substituting Eqn. 2 for the wave

number it is easily shown that wn = nD/2L*. Substituting an appropriate range of

L*/D values for relatively shallow cavities at Mach 5 (i.e., 0.25 < L/D < 1.25), the
corresponding range for the wave number is roughly in the range 1 to 3. In this
‘medium’ range resistance coefficient (R) increases almost linearly with wave number
radiation. Consequently, assuming the hypersonic cavity flow problem resembles a
baffled-piston radiating into a semi-infinite medium, one could approximate the
dissipation as a linear function of wave number (or D/L¥*):

b=c,Z,(D/L*) wherec isaconstant (14)

However, radiation in the hypersonic axial cavity flow problem is significantly
more complicated than the classic baffled-piston problem. A major complication is
posed by the bow shock which will reflect and invert acoustic waves. The strong
convection current just outside the cavity mouth would significantly distort the acoustic
waves between the cavity mouth and bow shock. The effect of shock motion,
curvature, and proximity to the mouth would also have a pronounced effect on the
acoustic field. The spring-mass-damper model presented herein focuses on relatively
shallow cavities which do not oscillate strongly. The model attempts to account for the
effect of shock reflection on the dissipation mechanism (discussed below) and puts
aside to qualitative discussion the effects of convection currents and shock motion.

There is good reason to believe that radiation resistance decreases as the mean
bow shock position moves close to the cavity mouth. The bow shock appears to reflect
and invert acoustic energy back towards the cavity mouth, reducing acoustic energy
losses. There is experimental evidence that solid reflectors near a baffled-piston
increase acoustic output. For example, hartmann whistle researchers found that annular
reflectors around the jet tended to increase acoustic efficiency [Ref. 14].

A brief analysis of a baffled-piston image problem (Fig. 12a) provides one
possible explanation of shock reflection effects. One baffled-piston represents the
oscillating cavity mass (i.e., the source). Another equal-strength image baffled-piston
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oscillates at the same frequency, and 180 deg out-of-phase (i.e., a sink), and faces the
first piston along the symmetry line. The pistons are separated by twice the standoff

distance (8). The acoustic pressure field is calculated by superimposing the acoustic

fields produced by each piston alone. The resulting acoustic pressure at the bow shock
is zero (a node point). As in the classic baffled-piston problem described earlier the real
part of the impedance (Z,) at the oscillating piston face represents the radiation

resistance or dissipation (b).

An analytical expression for the impedance at the source piston face is obtained
by making the simplifying assumption that the baffled-piston radiates all acoustic
energy as plane waves towards the bow shock without spherical spreading (R = 1).
This assumption is equivalent to assuming the effect of piston radius is small. For the
classic baffled-piston problem it may be shown that spherical spreading is not
established until an axial distance of greater than the piston diameter. In the nose-cavity
configurations traveling the maximum axial distance of wave travel from the piston is
the shock standoff distance and this is smaller than the piston diameter. Consequently,
the assumption of plane waves between the bow shock and cavity mouth appears
reasonable provided the effects of strong convection are ignored. The resulting plane
wave solution for the complex pressure field, p(x,t), due to a single baffled-piston is a
function of the pressure amplitude (P,), the oscillation frequency (f), wave speed (c,),
time (z), and axial distance from the vibrating surface (x):

p(x,t)= P, g 2T (f=fik,) (15)

The analytical expression for the complex pressure field at the piston face is
found by superposition of the complex pressures produced by the source piston (x = 0)

and the image piston (x = 23). Dividing by the velocity expression for the sinusoidally-

oscillating piston we obtain the complex impedance at the piston face:

Zp = Z,((1~ cos(4ndfic, ) +i (sin(4ndfrc,))]. )
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Substituting for the oscillation frequency () using an expression similar to Eqn. 2
based on a length scale (Ly) the final expression for impedance is obtained as:

Z, = Z, (1~ cos(rd/Ly)) +i (sin(m/Ly))]. (17)

Note that if the frequency is set equal to the primary frequency from Eqn. 2 then Ly
becomes L*.

The real part of the impedance at the piston face is proportional to Z, and varies

roughly quadratically with the non-dimensional parameter &/Ls for moderate values of

&/Ly (i.e., for relatively shallow cavities). Note, acoustic waves generated at the cavity

mouth travel one standoff distance, reflect off the shock, and return to the cavity
mouth, assuming the wave speeds and amplitudes are not appreciably affected during
transit. These reflected waves could interfere with piston motion since the returning
waves may be out-of-phase with the piston. Theoretically, if the shock is fixed at the
cavity mouth there is no acoustic pressure (or dissipation) at the piston face.
Consequently, the ratio of the standoff distance to the length scale associated with the
oscillation frequency appears to be an important parameter in the calculation of radiation
resistance. Based on the image-piston problem a reasonable approximation for the
radiation resistance is given by:

b=c z,(5/L,) (18)

Recall that based on the classic single baffled-piston problem the same functional
relationship could be assumed (except replacing 6 with D as shown in Eqn. 15).

Another argument can be made that dissipation should increase with bow shock
standoff distance. If the standoff distance is relatively large the bow shock would ‘see’
the cavity mouth as an acoustic point source. The acoustic waves would spherically
spread before reaching the bow shock (Fig. 12b). That is, acoustic energy would be
dissipated between the cavity mouth and bow shock due to radial spreading.
Consequently, it is reasonable to expect that dissipation increases with standoff
distance.
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Finally, recent results from an experimental study [Ref. 15] of strongly-
perturbed cavity flows at Mach 4 (PQFLT facility) focused on the ability of a given
cavity to dissipate strong oscillations. In the experiments a Nd:Yag laser is used to
introduce controlled thermal-acoustic perturbations upstream of the cavity mouth.
These ‘hot-spot’ perturbations induce strong oscillations within the cavity which
dissipate over a period of several oscillation cycles. Based on the observed dissipation
rates of the pressure oscillations at the cavity base an exponential decay rate (and
damping coefficient) is fit to the data. The damping coefficient was found to decrease
quickly with the characteristic length scale (i.e., b ~ 1/L*?) for L/D < 2.0. Note that
this trend is based on only four cavity depths and does not provide a complete
functional relationship for the dissipation element.

Based on the analytical arguments just described it would seem reasonable to
assume the radiation resistance in the spring-mass-damper model is related to the

characteristic fluid impedance (Z,) and bow-shock standoff distance (3), and inversely
related to the length scale associated with oscillation frequency (Ls). The constant of
proportionality, c1, is ‘calibrated’ for a representative cavity configuration. Assuming a
proportional relationship, the resulting equation for radiation resistance is then:

b=c, Z,(8/L;) (19)

When an oscillating cavity is modeled as a baffled-piston vibrating into either an
infinite or finite medium, an acoustic inductance (or mass element) is usually included
to represent a small layer of fluid just outside the cavity mouth [Ref. 10]. The added
mass can be calculated from the classic baffled-piston problem, even when a reflector is
present. Suppose the piston emits plane waves, as assumed in the derivation of the
dissipation element (i.e., piston vibrates at the high frequency limit). The imaginary
impedance coefficient (X) for a baffled-piston at the high-frequency limit is 0.2 (see
Fig. 11). To obtain the added mass value (Am) this coefficient must be divided by the

wave number (based on the oscillation length scale).

Am=0.127p,L, (20)
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This added mass (per unit area), however, only has a secondary effect on the s-m-d
model results.

4.5 S-M-D Model Summary

The fluid dynamic response of a relatively shallow cavity to sinusoidal
freestream perturbations is approximated by a spring-mass-damper model (Fig. 13).
The entire cavity fluid is assumed to accelerate like a rigid mass (mcqy) based on the
one-dimensional Euler equation (assuming a constant density and a mean axial pressure
gradient). The mean axial pressure gradient is derived assuming a linearized quarter-
sine wave axial pressure distribution and is simply a function of the input pressure at
the cavity mouth (P;;), the base pressure (Ppgg), and the cavity length (L).
Substituting for the pressure gradient in the Euler equation and rearranging, the
following simple relation is obtained for the sum of pressures on the mass element:

ZP:Pin —Pbase 21

The input pressure is the driving pressure and is represented by the time-
varying stagnation pressure behind the bow shock. The base pressure is calculated
based on an approximate cavity fluid stiffness (k) and the bow shock displacement
from its steady flow position (xs5 - x5). Note, the bow shock motion (i.e.,

displacement (xgp), velocity (Vy), and acceleration (Vsh)) and the rigid mass motion
are assumed identical in the s-m-d model. Consequently, there is no phase difference
between the maximum basewall pressure and the maximum downstream position of the
bow shock although there was a modest phase difference in the CFD simulations of
roughly 1/8 of an oscillation cycle. The dissipation (b) appears to be associated with
radiation of acoustic energy from the cavity mouth and is derived from a baffled-piston
image problem. A small additional mass element (Am) is included in the total mass

element (mgys) to represent the inertance at the cavity mouth associated with baffled-
piston radiation.
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Adding the dissipation into Eqn 21 and rearranging, the following second order linear
system (two first order ODEs) is derived:

x.sh = Vsk

. 22
Vih = (Py = k(X = X,) = bV ) m @2

A small program was used to used to solve these equations.

In the program the user sclects the model geometry (cavity length, cavity
diameter, body nose diameter), mean freestream static conditions (velocity,
temperature, pressure), and a noise model (frequency and amplitude). The program
calculates the shock stand-off distance based on the Mach number and body nose
diameter using an empirical relation from Anderson [Ref. 16]. Eqn 2 is then used to
calculate a natural frequency. Next, the mass, stiffness, and dissipation elements are
calculated using the relations described earlier (repeated below in Eqn. set 23). The
initial bow shock position (x,) is set based on steady flow conditions. Specifically, the

spring force is set equal to the steady flow input pressure (i.e., stagnation pressure
behind a steady normal shock). The damping calibration constant (c1) is set to 0.40 to

provide best agreement with one representative CFD simulation (i.e., specific
geometry, inflow conditions, noise configuration).

Megy =P L;

Am=0.127L;;

Mmsys = mcav + Am

k = (271) msys,

X, =P,k 23)

b"-"Cl Zo (S/Lf)
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The two first order differential equations(22) describing the second order linear
System are integrated in time using a 4th order Runge-Kutta scheme. The mode]
calculates the input pressure based on the current time. The sinusoidal inflow noise
model is repeated below as Eqn. 24:

P, (t)= Py [1+ Asin(2nt/1)] (24)

Once the oscillations are pseudo-steady the model calculates the amplification (Eqn. 3)
and average bow shock speed to provide direct comparison with CFD simulation
results.

S Sensitivity Study (CFD vs. S-M-D)

A sensitivity study of relatively shallow cavities (/D < 1.25) is conducted in
order to understand how different parameters affect the strength of oscillations within
the cavity. In all sensitivity cases examined numerical resonance is simulated by input
of sinusoidal freestream noise at a discrete frequency.

The nominal case is a medium depth cavity (L/D=0.75) with a sharp lip. The
inflow noise peak-to-peak amplitude of pressure and density are $0.02 Poo and +0.02

Pes, respectively. The mean freestream conditions correspond to those in the Mach 5

facility. Note that the freestream rms amplitudes are 1.41%. The simulation results for
the nominal case serve as a standard for comparison to the other cases.

The sensitivity of amplification to various parameters is determined using both
INCA and the spring-mass-damper (s-m-d) model. The parameters studied with INCA
include noise frequency, noise amplitude, noise variable type, cavity depth, cavity lip
radius, body nose diameter, Mach number, fluid viscosity, and thermal wall condition.
The parameters studied with the s-m-d model are a subset of this list and include noise
frequency, noise amplitude, noise variable type, cavity depth, body nose diameter, and
Mach number but neglect cavity lip radius, fluid viscosity, and thermal wall condition.
The validity of the s-m-d model is studied by directly comparing th model and CFD
results.
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5.1 Sensitivity of Amplification to Noise Frequency

Consider first the dependence of pressure amplification (G), defined in Eqn. 3,
on input perturbation frequency. Fig. 14 illustrates the variation of amplification with
input frequency for the nominal case (L/D = 0.75 @ Mach 5) using both INCA and the
s-m-d model. There is a strong dependence of the amplification on input frequency.

The amplification is maximum when the driving frequency (f) is a particular value

(fopo). This optimum frequency is slightly less than the primary frequency from Egn.2
(3650 Hz) using both CFD (8% lower) and the s-m-d model (1% lower). Using both
CFD and SMD, the amplification also drops rapidly (rolls-off) with changes in the
driving frequency. The curve is more rounded near the peak for the CFD results which
suggests that axial cavity flow behavior cannot be emulated precisely with a linear s-m-
d system. As discussed earlier, the s-m-d model is calibrated using the optimum
amplification value for this nominal case (i.e., 1 = 0.4). It is important to note that this
constant is the same for all cases and was set using just this one CFD amplification
result.

Fig. 15 shows the dependence of amplification on input frequency for three
cavity depths (L/D=0.25, 0.75, and 1.25) near the amplification peaks for both INCA
and the s-m-d model. These peaks become higher and sharper as cavity depth (and
amplification) is increased. The increase of normalized amplification roll-off,

1dG/d(f/foppl with amplification is consistent with a damped harmonic oscillator.

Fig. 16 presents basewall pressure histories from start-up for the L/D=0.25 and
0.75 cases driven at f,, for both INCA and the s-m-d model. Note the good agreement
between the CFD and s-m-d histories. The first pressure peak is nearly the same for
both cavity deptths, which is expected since the acoustic input energy (i.e., rms) is
identical.
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5.2 Sensitivity of Amplification to Noise Amplitude

Consider the dependence of amplification on noise level (i.e., input perturbation
amplitude). Several simulations are performed for the nominal L/D=0.75 configuration
at different noise amplitudes using different frequencies to isolate the frequency which

provides maximum amplification. In each case the same frequency (3400 + 100 Hz) is

identified by INCA as this optimum frequency. The s-m-d model identifies the primary
frequency (i.e., 3600 Hz) as this optimum frequency for each noise amplitude level.
That is, the optimal frequency is independent of the noise amplitude.

Fig. 17 shows the variation of amplification and mean bow shock speed with
noise rms level at the optimum frequency obtained from the CFD and s-m-d. Based on
the CFD results the pressure levels within a given cavity increase nearly proportionally
with inflow noise rms until the strength of pressure oscillations begins to plateau or
saturate. That is, amplification stays nearly constant until saturation occurs at a noise
rms level of approximately 1-2%. The s-m-d model results indicate that amplification is
constant with noise rms. This is expected of the s-m-d model since the input
perturbation energy (over one cycle) increases proportionally to noise rms.
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Fig. 17 : Amplification and bow shock speed vs. sinusoidal noise level

41




These results confirm those of Section 3 in which amplification is shown to be roughly
independent of broadband noise amplitude (within a factor of two) based on numerical
and experimental data.

The same trend is evident for the variation of mean bow shock speed with noise
amplitude (i.e., mean bow shock speed increases proportionally to inflow noise rms).
Based on the two illustrated relationships one may deduce that basewall pressure
amplitude also increases proportionally to mean bow shock speed (and bow shock
oscillation amplitude). This relationship implies a ‘stiffness’ since as bow shock
oscillation amplitude grows so does the basewall pressure amplitude (see also Section
4.1). The s-m-d model results also indicate that mean bow shock speed is proportional
to noise rms (and basewall pressure amplitude).

5.3 Sensitivity of Amplification to Noise Variable

Next consider the sensitivity of amplification to the specific choice of noise
variable, that is whether the noise is isothermal, isobaric, incompressible, or isentropic.
As described earlier, the nominal case includes sinusoidal perturbations in pressure and
density (isothermal noise). Fig. 18 illustrates base pressure history (starting from
steady flow) for the nominal case at the primary mode frequency (3600 Hz).
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Base pressure histories are also plotted using two other noise models: isobaric
(perturbations in temperature and density) and incompressible (perturbations in
pressure and temperature). Both the isothermal and isobaric noise models produce the

same amplification (but 180° out of phase). Incompressible noise however results in
negligible oscillations.

These results may be analyzed using the normal shock relations (and can be
similarly demonstrated by the s-m-d model). Suppose the static pressure, density, and

temperature, respectively, are defined in terms of the mean values and an arbitrary
function of time, fn(t), for isothermal, isobaric, and incompressible noise:

P, =P fu(t) P =P P, =P fn(t)

P1 =£fn(t) P =£fn(t) P1 =£ (25)
T =T T,=T/fn(t)  T,=T fn(t)

(isothermal ) (isobaric) (incompressible)

The pressure ratio across a normal shock as a function of the upstream Mach number
(M,) is given by:

B _2yM? y-1
AR y+1 v+l

M, =V, /\"RT, 26)

Assuming hypersonic speeds the second term in the pressure jump can be neglected.
Substituting the expressions for P, from Eqn. 25 and M  from Eqgn. 26 and
rearranging, the final expression for the pressure downstream of the bow shock P,)is
obtained for each case:

2YM1* — 2yM\* P 2yM,? —
P, ="YZL Bifur) p=XYL P p _2YMY 5

Y +1 Y+1 fu(t) Y +1 27
(isothermal) (isobaric) (incompressible)

P, is proportional to fn(s), 1/fn(t), and 1 for the isothermal, isobaric, and
incompressible cases, respectively. Assuming the arbitrary function, fn(#), consists of
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a mean value plus small sinusoidal variations (as in the CFD inflow noise model), the
amplitudes of fn(t) and 1/fn(t) are approximately equal but 180 deg out of phase. The
sinusoidal variations in the pressure downstream of the bow shock which drive the
oscillations are nearly identical (except out-of-phase) for isothermal and isobaric noise,
On the other hand, no variation in the pressure downstream of the bow shock is
expected for the incompressible case. Hence, this analysis confirms the CFD results
for isothermal, isobaric, and incompressible noise seen in Fig. 18.

Finally, isentropic noise in which static pressure is again defined proportional to
the arbitrary time function results in an expression for P, shown below. Note that this
isentropic noise should be less effective in producing oscillations than isothermal and
isobaric noise since 1/y = D.> <1. CFD results confirm this result by indicating a

25% reduction in amplification for an isentropic noise case.

_ 2YMy?

P, = — Pi(fa(e))"” (28)

5.4 Sensitivity of Amplification to Cavity Geometry

Consider the sensitivity of pressure amplification to cavity geometry.
Specifically, sensitivity to cavity depth and cavity lip radivs are studied numerically,
Typically four separate CFD simulations are performed for each geometry using
different frequencies to again isolate the frequency (fop,) which provides the optimum
amplification.

Fig. 19 illustrates optimum amplification and mean bow shock speed relative to
the body for four sharp lip cavities with different cavity lengths (other geometry
features held constant). The CFD results indicate that amplification increases nearly
proportionally to cavity length over the entire L/D range, and that mean bow shock
speed increases with cavity length nearly asymptotically. There is remarkably good
agreement between CFD and the s-m-d model for both amplification and bow shock
speed. The s-m-d model deviates from the CFD the most at L/D=1.25 since the
oscillations are strongest and presumably exhibit a more nonlinear acoustic wave

behavior.
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The perfect agreement for the amplification at L/D=0.75 reflects the fitting of ¢1=0.4 at
that point.

The effect of geometric scale is studied by comparing the pressure-time history
for the nominal L/D=0.75 case at a driving frequency of 3300 Hz with a half-scale
version at a driving frequency of 6600 Hz. The resulting pressure-time histories
(normalized by frequency) and amplifications (both not shown) are virtually identical
indicating dynamic similarity (no sensitivity to scale). This is expected since boundary
layers and viscous dissipation forces appear to be quite small. Dynamic similarity, is of
course, also preserved in the s-m-d model.

Pressure oscillations are modestly sensitive to lip geometry for the range of lip
radii from 0.1 mm to 1.0 mm. Experimental work conducted by Yuceil and Dolling
[Ref. 2] at Mach 5 concluded that flow dynamics near the cavity base are not
substantially affected by changes in the Lip shape. Numerical simulations using a
sinusoidal perturbation at Mach 5 indicate weak to modest sensitivity of the
amplification parameter to small chan ges in lip radius. The amplification for L/D=0.25
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and L/D=0.75 increase approximately 5% and 25%, respectively, as lip radius is varied
between 0.1 mm and 1.0 mm. Note that the optimal frequencies (fopy) for the rounded
lip cases were not determined (i.e., fopt was set based on the corresponding sharp lip
results). Consequently, the amplification increases may be somewhat larger than
indicated. Perhaps the pressure oscillations radiate (lose acoustic energy) more
effectively for sharp lip cases since the large separated flow region just outside the
cavity mouth, near the lip, represents a stagnation pressure loss (energy loss).

3.5 Sensitivity of Amplification to Nose Diameter

The sensitivity of amplification to body nose diameter is studied in a similar
manner to the sensitivity to cavity depth. Again, typically four separate CFD
simulations are performed for each geomerry using different frequencies to isolate the
frequency which provides the optimum amplification. The cavity geometry is fixed
(i.e., nominal case, L=1.91 cm, D=2.54 cm, L/D=0.75). The freeswream noise model

is again 2% sinusoidal perturbations in pressure and density at Mach 5.

ZOF

15} —{+— cm
—O0— s-M-D

Amplification (G)
=)
T

5 D/D 10 15
Fig. 20 : Amplification vs. nose diameter
(cavity diameter (D) = 2.54 ¢m)

Fig. 20 illustrates spline-fitted CFD results for optimum amplification versus
nose diameter. These results indicate that peak amplification varies with nose diameter
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(D,) ratio, Dp/D, in a highly non-linear fashion, reaching a maximum quickly (near
Dp/D =4) and then gradually decreasing for larger nose diameters. The s-m-d model
results show a monotonic decline in amplification with nose diameter. Note that the
gradually decreasing trends for both the CFD (for Dy/D > 4) and s-m-d results indicate
that amplification is almost inversely proportional to D, Based on the dissipation
mechanism described earlier it is expected that amplification would decrease smoothly
as nose diameter increases since as the bow shock is further removed from the body the
reflection of acoustic energy is less efficient. However, it is likely that radial spreading
of the acoustic waves traveling between the cavity mouth and bow shock is responsible
for the more rapid decrease in amplification in the CFD.

One possible explanation for the maximum in the CFD results involves the
strong convection currents at the cavity mouth (see Fig. 21a). These currents are quite
strong when the bow shock is relatively close to the cavity mouth (e.g., radial velocities
of approximately Mach 0.5). These currents weaken quickly as nose diameter is
increased since the bow shock moves upstream (see Fig. 21b). Strong convection
increases the acoustic wave speeds in the radial direction thereby diffusing the acoustic
energy traveling between the bow shock and cavity mouth and reducing the acoustic
efficiency of the system. Hence, small nose diameter bodies could be expecicd to
produce higher dissipation and lower amplification. Note that the 1-D s-m-d model
assumes no radial spreading of waves and cannot emulate these results.

The optimum frequency from the CFD simulations essentially does not change
as nose diameter increases, even though the characteristic frequency (Eqn. 2) decreases
as the standoff distance decreases. When the shock standoff distance is relatively large
the cavity gas approaches a quasi-static condition (Section 4) at the primary frequency
(i.e., cavity dimensions are small compared to the oscillation length scale). The cavity
flow is able to equilibrate relatively quickly compared to the oscillation time scale
(~ setby &) and it becomes difficult to achieve a strong pressure gradient within the
cavity during the oscillation. Consequently, it is reasonable to expect that the optimum
frequency for large D,/D cases would be closer to that posed by the cavity depth (L) as
the characteristic length scale rather than L*,
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5.6 Sensitivity of Amplification to Mach Number

Consider next the effect of Mach number on pressure amplification. Numerical
simulations are performed using the geometrically nominal L/D=0.75 case but at
different Mach numbers. In each simulation adiabatic wall conditions are implemented
and the flow is assumed calorically perfect. Typically four separate simulations are
performed for each Mach number using different frequencies to isolate the frequency
which provides the optimum amplification.

Fig. 22 shows the variation of amplification with input frequency for Mach 2,
3,5,7, and 9. CFD results indicate that amplification increases rapidly with Mach
number for low Mach numbers but begins to level-off at hypersonic speeds. S-m-d
results also demonstrate that amplification levels-off with Mach number. However, the
two asymptotes are moderately different in slope and in final asymptotic value. The s-
m-d model produces this asymptotic trend because the dissipation is directly
proportional to the steady flow bow shock stand-off distance which asymptotically
decreases with Mach number.

5.7 Sensitivity of Amplification to Viscous Effects

The effect of fluid viscosity was studied by comparing the base pressure history
for the nominal L/D=0.75 case with the same case but including an inviscid fluid
constraint (i.e., viscosity = 0). The inviscid solution was virtually identical (not
shown) to the nominal viscous solution indicating that the mechanisms of resonance
and dissipation are inviscid phenomena. This is unlike a Helmholtz resonator near a
reflector for which viscous dissipation is the primary dissipation mechanism [Ref. 11].

5.8 Sensitivity of Amplification to Thermal Constraint

CFD results indicate that the thermal wall constraint (i.e., isothermal wall vs.
adiabatic wall) has a weak effect on amplification for cases which involve a small
temperature potential (i.e., the wall temperature is close to the stagnation temperature).
For example, the nominal L/D=0.75 case with an isothermal wall at 300 K shows a
reduction in the amplification of less than 2% if an adiabatic wall is used instead.
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However, if the temperature potential is large then amplification is significantly
reduced. Simulation results for the nominal geometric configuration at Mach 9 with
isothermal wall (300 K) and adiabatic wall conditions showed a moderate reduction
(i.e., 30%) in amplification in the isothermal wall case. Perhaps the large radial
temperature gradients within the cavity cause the resonant frequency to become a strong
function of radial position and this ambiguity leads to significantly reduced
amplification.

6 S-M-D Model Response to Broadband Noise

In order to further study and verify the s-m-d model described in Section 4
another set of comparisons to CFD results are conducted in which the response of the
s-m-d model to broadband noise for various cavity depths (L/D < 1.25) at Mach § is

compared to the appropriate CFD results from Section 3. The s-m-d model is exactly
the same as implemented in Section 5 except the variation of freestream static pressure
with time is the same as implemented in the related CFD Mach 5 simulations.

Fig. 23 shows the variation of amplification with cavity depth at Mach 5
obtained from the CFD and the s-m-d model.
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Fig. 23 : Cavity response to broadband noise
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The s-m-d model predicts somewhat low values but follows the basic trend G.e.,
increasing with depth) for a while. Recall that CFD and s-m-d model results for
amplification vs. frequency (Fig. 12) indicate that the peaks amplifications are similar
but broadened in the CFD results. Assuming the effect of noise energy at each
individual frequency may be summed, it is reasonable to expect that the CFD would
produce the larger amplification in response to ‘white’ noise. In deeper cavities (Fig.
15) the difference in sharpness of the amplification peaks between the CFD and s-m-d
becomes more dramatic which might explain why the amplification curves diverge in
Fig. 23.

7 Self-Sustaining Mechanism

As mentioned earlier it would appear quite difficult to model the fluid dynamics
of self-sustaining cases (i.e., relatively deep cavities) which exhibit strong, non-
sinusoidal shock motion and nonlinear acoustic wave behavior. The relative motion of
the bow shock can no longer be ignored in the model. In fact, two arguments are
presented below that the motion of the shock is directly related to the self-sustaining
phenomenon.

Consider a bow shock oscillating in front of a typical nose-cavity. Analytically
it may be shown that momentum losses across a bow shock (i.e., internal viscous
dissipation or loss of stagnation pressure) increase with forward shock motion and
decrease with aft shock motion. Consequently, it would appear that inflow momentum
(i.e., the driving force) is larger during cavity inflow than during cavity outflow.
During cavity inflow the freestream flow momentum tends to reinforce the cavity flow
since both flow in the same direction (i.c., cavity flow is energized). During cavity
outflow the freestream momentum opposes the cavity flow (i.e., cavity flow energy is
depleted). Thus, due to the relative imbalance in losses across the moving shock even
symmetric (e.g., sinusoidal) bow shock oscillations might tend to add energy to the
cavity fluid oscillations. This energy addition would increase with mean bow shock
speed, perhaps acting like a ‘reverse dissipation’.

From another point of view and based on fluid dynamic animations, it appears
that the flow field is fundamentally different during cavity inflow and outflow phases.
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During cavity inflow (Fig. 8a) there is relatively low pressure and high velocity
downstream of the bow shock and the incoming airstream flows directly into the cavity
without significant radial flow (i.e., the axisymmetric ‘relieving’ effect is small). In
contrast, during cavity outflow (Fig. 8b) there is relatively high pressure and low
velocity downstream of the bow shock and the incoming airstream tends to flow
radially around the blunt nose. Consequently, it would appear that the ‘relieving’ effect
is strongest during cavity outflow, reducing or deflecting the momentum of the
incoming stream. Again, bow shock motion appears to be creating a ‘reverse
dissipation’ since the effect should grow with mean bow shock speed.

If this ‘reverse dissipation’ exists, a self-sustaining phenomenon could occur
for certain nose-cavity configurations which produce a relatively small amount of
radiation resistance (b). Recall, radiation resistance decreases monotonically with
cavity depth according to Egn. 18. Similarly, the damping ratio decreases
monotonically with cavity depth according to recent experimental work at Mach 4 [Ref.
15]. Suppose the ‘reverse dissipation’ remains constant with cavity depth. It follows
that as cavity depth increases eventually the total dissipation would change sign (i.e.,
become negative) and the flow would resonate strongly without freestream noise. This
likely accounts for the rapid change in amplification with L/D in Figs. 4a and 4b. Other
damping mechanisms (e.g., those associated with strong oscillations) would
presumably keep the oscillations from becoming unbounded.

Preliminary time-accurate CFD simulation results involving different 2-D (non-
axisymmetric) cavity geometries and freestream Mach numbers (not discussed herein)
indicate that 2-D forward-facing cavities in hypersonic flows do not self-sustain
resonant oscillations. However, these 2-D nose-cavity geometries do amplify
sinusoidal inflow noise perturbations similar to the axisymmetric cases. These trends
imply that the self-sustaining mechanism is related to the relatively strong relieving
effect present in axisymmetric cases (perhaps in the manner described above) and that
the noise-driven mechanism is primarily a 1-D phenomenon (as suggested by the s-m-d
model).
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8 Summary

The agreement shown between computations and experiments implies that
freestream noise in a small bandwidth of frequencies near the primary mode is the
mechanism which drives resonant pressure oscillations within relatively shallow
forward-facing cavities. On the other hand, numerical simulations indicate that
relatively deep cavities are unstable and will oscillate without freestream noise (i.e.,
self-sustain resonant oscillations).

The response of relatively shallow cavities to inflow noise is somewhat
analogous to a damped harmonic oscillator. A spring-mass-damper (s-m-d) model was
developed based on analytical study and fluid dynamic observations. The cavity fluid
accelerates almost uniformly, like an oscillating piston, and is approximated by a rigid
mass clement. These flows also exhibit a ‘stiffness’ since the basewall pressure
amplitude increases almost proportionally to bow shock amplitude. Dissipation arises
from baffled-piston-like radiation losses. The bow shock acts as a reflector placed and
ahead of the piston.

A parametric study of relatively shallow cavities established the sensitivity of
amplification (gain) to noise frequency, noise amplitude, noise variable type, cavity
depth, cavity lip radius, body nose diameter, geometric scale, Mach number, viscous
and thermal wall conditions. Reasonable agreement between the CED and s-m-d model
was obtained for most of these parameters.
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